# The Crystal Structures of Two Compounds Found in Dental Amalgam: $\mathbf{A g}_{2} \mathbf{H g}_{3}$ and $\mathbf{A g}_{3} \mathbf{S n}^{*}$ 

By C.W. Fairhurst $\dagger$ and J.B. Cohen<br>Department of Materials Science, The Technological Institute, Northwestern University, Evanston, Illinois, U.S.A.

(Received 27 January 1969 and in revised form 18 January 1971)
The structures of two of the three common compounds found in dental amalgam have been determined with single crystals. Intensity measurements were made with a diffractometer. The space group of $\mathrm{Ag}_{3} \mathrm{Sn}$ is Pmmn; the cell constants (determined with powders and a diffractometer) are $a=5.968$ (9), $b=4.7802$ (4), $c=5 \cdot 1843$ (9) $\AA$. There are two formula weights per cell. Close packed layers, each containing an ordered array of Ag and Sn atoms, occur at $b=\frac{1}{4}$ and $\frac{3}{4}$. No disorder was detected at temperatures below $175^{\circ} \mathrm{C}$. The weighted $R$ value (on $F$ ) was $0 \cdot 150 . \mathrm{Ag}_{2} \mathrm{Hg}_{3}$, although long considered to have the $\%$-brass structure (but with an unusual composition) is cubic with space group 123 . The Hg atoms occupy general positions; vacancies of approximately $10 \%$ occur. There are 50 atoms per cell. The weighted $R$ value (on $F$ ) was $0 \cdot 187$. Deformation markings are easily produced in $\mathrm{Ag}_{3} \mathrm{Sn}$. The shear elements are:

$$
\begin{array}{ll}
K_{1}=(0 \overline{1} 0), & \eta_{1}=[0 \overline{1}] \\
K_{2}=(011), & \eta_{2}=[0 \overline{1} 1]
\end{array}
$$

Intensity measurements from one such region indicate that the structure is the same as that of the unsheared crystal, indicating that these markings are true twins. Some growth twins were found in $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$; the composition plane appears to be (112).

## Introduction

Dental amalgam is a multi-phase solid consisting of the $\varepsilon$ phase, $\mathrm{Ag}_{3} \mathrm{Sn}$, of the silver-tin system, the $\gamma$ phase of the silver-mercury system, and the $\gamma$ phase of the tin-mercury system. Some form of amalgam has been in use since about 1826 but the present form was first reported in 1895 (Black, 1895, 1896). A generalized equation for the amalgamation is given as (Ryge, Fairhurst \& Fischer, 1961):

$$
\mathrm{Ag}_{3} \mathrm{Sn}+\mathrm{Hg} \rightarrow \underset{1}{\gamma_{1}(\mathrm{Ag}-\mathrm{Hg})+} \underset{\text { unreacted } \mathrm{Ag}_{3} \mathrm{Sn}}{\gamma_{2}(\mathrm{Sn}-\mathrm{Hg})}
$$

Previous studies (Fairhurst \& Ryge, 1962) have identified and determined the structure of the $\mathrm{Sn}-\mathrm{Hg}$ phase. The purpose of this investigation was to determine the crystal structures of the silver-tin and silvermercury phases.

Murphy (1926) studied the equilibrium conditions of the silver-tin binary system and established the existence of $\mathrm{Ag}_{3} \mathrm{Sn}$. Preston (1926) described the structure as a close-packed hexagonal phase, but HumeRothery (1926) suggested that a multiple hexagonal cell would better satisfy the hexagonal symmetry and the composition requirements for $\mathrm{Ag}_{3} \mathrm{Sn}$. X-ray diffraction from powder specimens (Nial, Almin \& Westgren, 1931) showed that the structure of $\mathrm{Ag}_{3} \mathrm{Sn}$ was really a 'deformed' hexagonal close-packed struc-

[^0]ture; the orthorhombic lattice constants were reported as:
$$
a=2.98, b=5.149, c=4.771 \AA .
$$

As all of this work was based on powder patterns the true structure could have been missed if any weak peaks were present. This condition exists for certain 'deformed' hexagonal structures (Karlsson, 1951).

The silver-mercury $\gamma$-phase was reported to be a body centered cubic structure (Murphy, 193I; Preston, 1931) with a cell edge of $10 \cdot 0 \AA$. Berman \& Harcourt (1938) examined natural crystals (which they called 'Moschellandsbergite') and assigned the $\operatorname{Im} 3 m$ space group to this mineral. Their chemical analysis of these crystals indicated the composition to be $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$ and the density to be 13.48 g. $\mathrm{cm}^{-3}$, in agreement with Murphy (1931).

## Experimental

## 1. Preparation of single crystals of $\mathrm{Ag}_{3} \mathrm{Sn}$

$\mathrm{Ag}_{3} \mathrm{Sn}$ crystals were obtained by slowly cooling melts containing $58 \mathrm{at} . \%$ tin from 525 to $300^{\circ} \mathrm{C}$ (into the two-phase region $\mathrm{Ag}_{3} \mathrm{Sn}$ plus liquid), then quenching the melts to $25^{\circ} \mathrm{C}$. The resulting ingots, containing about 50 vol. $\%$ of the $\mathrm{Ag}_{3} \mathrm{Sn}$ phase, were then placed in concentrated HCl for twenty-four to forty-eight hours with intermittent cleansing in detergent solution in ultrasonic cleaning equipment. A large number of small crystals were freed from the ingot in this manner. The crystals were relatively ductile and mechanical deformation was readily produced. The deformation markings were detected with optical microscopy, and extra Bragg reflections occurred when they were present.

Care was taken to choose unmarked crystals for structural studies. Some crystallographic features of the deformation will be reported here.

## 2. Preparation of single crystals of $\mathrm{Ag}_{3} \mathrm{Hg}_{3}$

The silver-mercury $\gamma$-phase forms at $127^{\circ} \mathrm{C}$ by a peritectic reaction. Attempts to obtain suitable crystals from melts, or by diffusion anneals within the solubility limits of this phase, were unsuccessful. Crystals were obtained by slowly cooling melts containing $0 \cdot 3$ to $0.4 \mathrm{at} . \%$ silver in mercury. The melts were cooled from 110 to $30^{\circ} \mathrm{C}$, through the liquid plus $\gamma$-phase region over a three-week period. The final temperature
was maintained for five days. The majority of the excess mercury was removed by aspirating through a linen cloth. The crystals were quite brittle and hence could be ground in a Bond (1951) crystal grinder. Although resulting shapes were nearly spherical, slight imperfections were still evident which can be important in structural studies for such highly absorbing elements as silver and mercury. Occasionally, twinned crystals were found.

## 3. $X$-ray techniques

The diffraction symbols were obtained with a precession camera. Many of the actual films have been

Table 1. Values of $h k l$ and $\sin ^{2} \theta$ for $\mathrm{Ag}_{3} \mathrm{Sn}$, copper $K$ radiation $25^{\circ} \mathrm{C}$
Specimen was - 325 mesh powder annealed in argon at $300^{\circ} \mathrm{C}$ for 15.5 hours. Slow scans on a diffractometer were employed; peak positions were determined by bisecting horizonal lines and extrapolating to the profile. Wavelengths were those in International Tables for X-ray Crystallography (1962).

|  |  |  | Parameter Standard deviation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & a=5.968 \AA \\ & b=4.7802 \\ & c=5.1843 \end{aligned}$ | $\begin{aligned} & 0.009 \\ & 0.000 \\ & 0.000 \end{aligned}$ | $\lambda$ | Calculated $\sin ^{2} \theta$ | Observed$\sin ^{2} \theta$ |
| hkl | $\lambda$ | $\begin{aligned} & \text { Calculated } \\ & \sin ^{2} \theta \end{aligned}$ | Observed $\sin ^{2} \theta$ | hikl |  |  |  |
| $002 \mathrm{c} \dagger$ | $\alpha$ | 0.0885 | 0.0881 | 611 | $\alpha_{1}$ | 0.6504 | 0.6512* |
| 020 b | $\alpha$ | $0 \cdot 1039$ | $0 \cdot 1035$ | 243 | $\alpha_{1}$ | $0 \cdot 6803$ | 0.6789 |
| 012 | $\alpha$ | $0 \cdot 1144$ | 0.1142 | 440 a | $\alpha_{1}$ | 0.6814 | 0.6811 |
| 022 | $\alpha$ | $0 \cdot 1924$ | $0 \cdot 1920$ | 440 a | $\alpha_{2}$ | 0.6847 | 0.6844 |
| 312 | $\alpha$ | 0.2645 | 0.2636 | 523 | $\alpha_{1}$ | $0 \cdot 7186$ | $0 \cdot 7200$ * |
| 203 | $\alpha$ | 0.2653 | 0.2659 | 523 | $\alpha_{2}$ | 0.7221 |  |
| 032 | $\alpha_{1}$ | $0 \cdot 3218$ | 0.3216 | 424 | $\alpha_{1}$ | 0.7233 | 0.7239* |
| 223 | $\alpha_{1}$ | $0 \cdot 3690$ | 0.3676 | 621 | $\alpha_{1}$ | $0 \cdot 7251$ |  |
| 104 | $\alpha_{1}$ | 0.3699 | 0.3696 | 424 | $\alpha_{2}$ | $0 \cdot 7269$ | 0.7262* |
| 104 | $\alpha_{2}$ | 0.3717 | 0.3718 | 621 | $\alpha_{2}$ | 0.7287 | 0.7301* |
| 014 | $\alpha_{1}$ | $0 \cdot 3792$ | $0 \cdot 3785$ | 334 | $\alpha_{1}$ | 0.7365 |  |
| 412 | $\alpha_{1}$ | 0.3806 | 0.3806 | 052 | $\alpha_{1}$ | 0.7368 | 0.7367 |
| 014 | $\alpha_{2}$ | $0 \cdot 3810$ | $0 \cdot 3816$ | 334 | $\alpha_{2}$ | $0 \cdot 7401$ |  |
| 330 | $\alpha_{1}$ | 0.3833 | 0.3836 | 051 | $\alpha_{2}$ | 0.7404 | 0.7404 |
| 040 b | $\alpha_{1}$ | 0.4150 | 0.4149 | 044 | $\alpha_{1}$ | 0.7683 | 0.7680 |
| 040 b | $\alpha_{2}$ | 0.4171 | 0.4169 | 044 | $\alpha_{2}$ | 0.7721 | 0.7716 |
| 024 | $\alpha_{1}$ | $0 \cdot 4570$ | $0 \cdot 4566$ | 006 c | $\alpha_{1}$ | $0 \cdot 7947$ | 0.7949 |
| 422 | $\alpha_{1}$ | $0 \cdot 4584$ |  | 006 | $\alpha_{2}$ | $0 \cdot 7987$ |  |
| $024 c$ | $\alpha_{2}$ | $0 \cdot 4592$ | 0.4592* | 350 | $\alpha_{1}$ | 0.7983 | 0.7981* |
| 422 | $\alpha_{2}$ | $0 \cdot 4607$ | 0.4620* | 603 | $\alpha_{1}$ | 0.7979 |  |
| 304 | $\alpha_{1}$ | $0 \cdot 5030$ |  | 603 | $\alpha_{2}$ | 0.8019 |  |
| 042 | $\alpha_{1}$ | 0.5033 | 0.5033 | 135 | $\alpha_{1}$ | $0 \cdot 8020$ | 0.8013* |
| 304 | $\alpha_{2}$ | $0 \cdot 5055$ |  | 533 | $\alpha_{1}$ | 0.8483 |  |
| 042 | $\alpha_{2}$ | $0 \cdot 5058$ | 0.5056 | 235 | $\alpha_{1}$ | 0.8520 | 0.8496 |
| 034 | $\alpha_{1}$ | $0 \cdot 5867$ | $0 \cdot 5865$ | 541 | $\alpha_{1}$ | 0.8533 |  |
| 432 | $\alpha_{1}$ | 0.5881 |  | 631 | $\alpha_{1}$ | 0.8548 | 0.8543 |
| 034 | $\alpha_{2}$ | 0.5896 | 0.5892 | 235 | $\alpha_{2}$ | 0.8562 | 0.8558* |
| 432 | $\alpha_{2}$ | 0.5910 | $0 \cdot 5927$ | 541 | $\alpha_{2}$ | 0.8575 | 0.8579* |
| 503 | $\alpha_{1}$ | $0 \cdot 6148$ | 0.6159* | 631 | $\alpha_{2}$ | 0.8590 | 0.8603* |
| 404 a | $\alpha_{1}$ | $0 \cdot 6195$ | 0.6192* | 026 c | $\alpha_{1}$ | $0 \cdot 8985$ | 0.8980 |
| $404 a$ | $\alpha_{2}$ | 0.6226 | $0 \cdot 6226^{*}$ | 623 | $\alpha_{1}$ | 0.9017 |  |
| 513 | $\alpha_{1}$ | $0 \cdot 6408$ | 0.6418 | 026 | $\alpha_{2}$ | $0 \cdot 9029$ | 0.9026 |
| 414 | $\alpha_{1}$ | 0.6455 | $0 \cdot 6459$ | 623 | $\alpha_{2}$ | $0 \cdot 9061$ |  |
| 414 | $\alpha_{2}$ | 0.6487 |  | 702 | $\alpha_{1}$ | 0.9039 | 0.9053* |
| 530 | $\alpha_{1}$ | 0.6496 | $0 \cdot 6485$ | 702 a | $\alpha_{2}$ | 0.9084 | 0.9097 |
| 530 | $\alpha_{2}$ | $0 \cdot 6528$ |  | 060 b | $\alpha_{1}$ | 0.9338 | 0.9339 |
|  |  |  |  | 060 b | $\alpha_{2}$ | 0.9385 | 0.9385* |

* Peaks were low in intensity and poorly defined
$\dagger$ Peaks labeled $a, b, c$ were used to obtain corresponding lattice constants by plotting against Nelson-Riley function $=$ $\frac{1}{2}\left(\begin{array}{c}\cos ^{2} \theta \\ \sin \theta\end{array}+\begin{array}{c}\cos ^{2} \theta \\ 0\end{array}\right)$.
reproduced elsewhere (Fairhurst, 1966). Integrated intensities were obtained by counting at discrete $2 \theta$ positions through a peak in a $\theta-2 \theta$ scan on a diffractometer. Care was taken to be sure the slits were open adequately to receive all of a peak, and the scan range was adjusted (for each peak) to be sure the background was reached. For $\mathrm{Ag}_{3} \mathrm{Sn}$, Rh -filtered Ag radiation was employed, to maximize the difference between the scattering of Ag and Sn atoms (which differ by only three in their atomic number). For $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$, Mo radiation was employed, and when integrated intensities were obtained, balanced filters of Y and Zr were used, expect for very weak peaks for which only the Zr filter was used. Corrections were made for background in all cases, from readings on either side of a peak.

Patterson projections, electron density maps and least-squares refinement were performed on a CDC 3400 computer using Professor J. Ibers's mapping program ( $F O R D A P$ ) and a least-squares program (Busing, Martin \& Levy, 1960) respectively. The variance $\left[\sigma^{2}(I)\right]$ of the intensity was calculated as (net counts) ${ }^{-1}$; except for peaks less than sixteen times the minimum value for which, following Hughes (1941), [16(net counts)] ${ }^{-1}$ was employed.

## Results

## 1. $\mathrm{Ag}_{3} \mathrm{Sn}$

Exposures on the precession camera of three to five days were employed so that any weak peaks whose intensity depended on the difference in scattering of Ag and Sn could be detected. Weak reflections were indeed found between rows of diffraction spots with constant $h$. From well annealed powders (see Table 1) the lattice parameters were found to be

$$
\begin{aligned}
& a=5 \cdot 968(9) \AA \\
& b=4 \cdot 7802(4) \\
& c=5 \cdot 1843(9)
\end{aligned}
$$

The $a$ value is twice that previously reported (Nial et al., 1931).

The conditions for diffraction were:

$$
\begin{gathered}
(h 00: h=2 n) \quad(h k 0: h+k=2 n) \\
(0 k 0: l=2 n)
\end{gathered}
$$

These conditions are consistent with either $P m 2_{1} n$ (or $P 2_{1} m n$ ) - $C_{2 v}^{7}$ (No. 31), and Pmmn- $D_{2 h}^{13}$ (No. 59).

On the basis of reported density values (Nial et al., 1931) and the new lattice parameters, the unit cell of $\mathrm{Ag}_{3} \mathrm{Sn}$ contains eight atoms, six atoms of silver and two of tin. A trial model of the structure of $\mathrm{Ag}_{3} \mathrm{Sn}$ was deduced from qualitative considerations of packing of a close-packed structure, plus the fact that the 200 reflection was relatively weak whereas the 400 was very strong. This structure has a packing efficiency $97 \%$ of that for a fully close-packed structure based on the metallic radii of Ag and Sn and the volume of the cell. The weak diffraction from the (200) planes can be accounted for by planes at $x=\frac{1}{4}$ and $x=\frac{3}{4}$ which contain all silver atoms, whereas the alternative planes might contain half silver and half tin. Attempts to pack such layers in the noncentrosymmetric space group yielded a value for the $c$ axis twice the measured value. Distortions of the layers for $P 2_{1} m n$ or $P m 2_{1} n$ seem unlikely in view of the close-packed nature of the structure. Furthermore, $h k l$ peaks with $h$ odd were quite weak, which would not be the case for the noncentrosymmetric space groups. The Pmmn space group was therefore assumed to be the correct choice.

A crystal free of deformation markings, but possessing well-defined faces was chosen for collecting intensity data. (Its size was roughly 0.3 mm .) The Albrecht (1939) method was used to obtain absorption corrections, some 35,000 path-lengths being employed. One hundred and thirty-nine integrated intensities were measured and corrected.

From a ball model, trial atom parameters were

Table 2. Parameters for $\mathrm{Ag}_{3} \mathrm{Sn}$ (space group: Pmmn, No. 59)
Origin at symmetry center Thermal parameters $\beta$ are multiplied by $10^{4}$.

|  | Equipoint | $x$ | $y$ | $z$ | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ag}_{1}$ | $4(f)$ | 0.00 | $\frac{1}{4}$ | $-0.3369(7)$ | $90(10)$ | $90(20)$ | $100(10)$ | 0 | $-77(15)$ | 0 |
| $\mathrm{Ag}_{2}$ | $2(b)$ | $\frac{1}{4}$ | $\frac{3}{4}$ | $-0.1723(17)$ | $110(20)$ | $47(25)$ | $127(25)$ | 0 | 0 | 0 |
| Sn | $2(a)$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $0.1687(13)$ | $4(10)$ | $75(25)$ | $70(14)$ | 0 | 0 | 0 |



Fig. 1. Stereo pair of the unit cell of $\mathrm{Ag}_{3} \mathrm{Sn}$. [Drawn with $O R T E P$ (Johnson, 1965)].
obtained. Least-squares refinement was carried out calculating both the residual indices

$$
R_{1}=\frac{\sum_{i}\left(F_{i}^{\mathrm{obs}}-F^{\mathrm{calc}}\right)}{\sum_{i} F_{i}^{\mathrm{obs}}}
$$

and

$$
R_{2}=\left[\begin{array}{c}
\sum_{i} w_{i}\left(F_{i}^{\text {obs }}-F_{i}^{\text {calc }}\right)^{2} \\
\sum_{i} w_{i}\left(\overline{\left.F_{i}^{\text {obs }}\right)^{2}}\right.
\end{array}\right]^{\frac{1}{2}}
$$

where $w_{i}$ is a weight factor based on the variance of the measured intensities for each peak, $w_{i}=1 / \sigma(I)^{2}$. Refinement was on $R_{2}$. The scattering factors employed were those calculated by Cromer \& Waber (1965) with corrections for anomalous scattering (Cromer, 1965). Anisotropic temperature factors were employed. Equivalent peaks were averaged; also some peaks (such as $h 0 l$ with $h$ odd) which were only barely detected after long exposures on the precession camera, were not found with the relatively short times for the scans on the diffractometer. Some 55 reflections remained for the refinement.
The structure refined to an $R_{1}$ value of $0 \cdot 109$, using anisotropic thermal parameters and an $R_{2}$ of 0.150 . Refinements with isotropic temperature factors gave $R_{1}=0 \cdot 119, R_{2}=0 \cdot 180$. The final parameters are given in Table 2, and the structure factors in Table 3. The

Table 3. Observed and calculated structure factors for $\mathrm{Ag}_{3} \mathrm{Sn}$

structure is shown in Fig. 1. Some typical interatomic distances are given in Table 4.

Table 4. Characteristic distances in $\mathrm{Ag}_{3} \mathrm{Sn}$

| $\operatorname{Ag}(1)-\operatorname{Ag}(1)[56405]$ | $2.928 \AA^{*}$ |
| :--- | :--- |
| $\operatorname{Ag}(1)-\operatorname{Ag}(1)[55502]$ | 2.984 |
| $\operatorname{Ag}(1)-\operatorname{Ag}(2)[55501]$ | 2.944 |
| $\operatorname{Ag}(1)-\operatorname{Ag}(2)[56405]$ | 2.950 |
| $\operatorname{Ag}(1)-\operatorname{Sn}[56505]$ | 2.949 |
| $\operatorname{Ag}(1)-\operatorname{Sn}[55401]$ | 2.966 |

* The first atom is in the first position of the rank 8 equipoint of Pmmn (No. 59). Other positions are indicated as in ORTEP (Johnson, 1965). The symbol in square brackets is:
( $5+x$ unit cell translations). $10^{4}+(5+y$ translations $) .10^{3}+$ ( $5+y$ translations) $10^{2}+$ (number of coordinate set in general equipoint). The last value is the number of the coordinate set reading left to right in International Tables for $X$-ray Crystallography (1952).

Murphy (1926) reported a change in resistivity of $\mathrm{Ag}_{3} \mathrm{Sn}$ at $60^{\circ} \mathrm{C}$ which might be due to disordering. Precession photographs were taken with Polaroid film, with the specimen heated by hot argon to 25,105 and $175^{\circ} \mathrm{C}$. No change in the weak reflections was observed.

## 2. Twinning in $\mathrm{Ag}_{3} \mathrm{Sn}$

Occasional deformation markings were first identified by two-surface analysis, measuring the angle between the two surfaces with an optical goniometer. [The surfaces were identified as (001) and (101) planes by diffraction.] The plane of the markings ( $K_{1}$ ) was ( $0 \overline{\mathrm{I}} 1$ ). The tilt between the ( 001 ) face and a marking was $5.5^{\circ}$ and that between a marking and the (101) face was $5 \cdot 3^{\circ}$. With these tilts, a stereographic analysis was performed assuming the marking was due to simple shear, to obtain the shear direction $\left(\eta_{1}\right)$ (Greninger \& Troiano, 1949). $\eta_{1}$ was [ $\left.0 \overline{\mathrm{I}} \mathrm{I}\right]$. Precession photographs of crystals with markings were taken of the ( 100 )* plane which is parallel to the 'plane of shear - the plane perpendicular to $K_{1}$ and containing $\eta_{1}$. As many as twenty extra spots were observed, all of which were reflections (across the trace of $K_{1}$ in this plane) of spots in crystals without markings. This strongly suggested that the specimen was twinned. Accordingly, by trial and error the second undistorted plane in a simple shear ( $K_{2}$ ) was located. The trace of this plane in $K_{1}$ must be perpendicular to $\eta_{1}$ and its position before and after shear must be symmetrically located with respect to the normal to $K_{1}$. Furthermore, as $\eta_{1}$ and $K_{1}$ are rational, $K_{2}$ must be as well (Cahn, 1954). One plane that satisfied these conditions was (011). $\eta_{2}$, the second undistorted line, must lie in $K_{2}$ and be perpendicular to the line of intersection of $K_{2}$ and $K_{1} ; \eta_{2}$ is then [ $\left.0 \overline{1} 1\right]$. The shear $(s)$ is:

$$
s=2 \cot 85 \cdot 2^{\circ}=0 \cdot 168
$$

where $85 \cdot 2^{\circ}$ is the angle between $K_{1}$ and $K_{2}$. The shearing process is indicated by Fig. 2 from which it can be seen that:


Fig. 2. (a). Relative positions of atoms before and after twinning in $\mathrm{Ag}_{3} \mathrm{Sn}$. Stars are Ag atoms, squares are Sn . Arrows indicate total movement of atoms. Initial positions prior to shear and shuffles are indicated by filled symbols. Final positions are open symbols. (b) Plane of shear; unit cell corners indicated by dots. The angles $\gamma, \alpha, \beta$ are shown.
(a) atoms must 'shuffle' in directions other than the shear direction if the product is to be a twin. Otherwise a new structure is generated by the shear, with $b$ and $c$ axes interchanged. Intensity data for $002,004,006$, 020, 040, 060 from an untwinned crystal and a twinned crystal agreed; particularly the 006 was similar in intensity to the 004 , whereas the 060 was much weaker than the 040 . If no 'shuffles' had occurred the 060 would be similar in intensity to the 040 , but the 006 would be much less in intensity than the 004 . [see Fig. $2(a)$.]. The structure within a deformation marking is a twin.
(b) A simple check that $K_{2}$ was correctly chosen can be obtained by measuring the angle $\gamma[$ Fig. 2(b)] between diffraction from $00 l$ in a crystal and $0 k 0$ in its twin; with the known cell constants the angle $\gamma$ was calculated to be $4 \cdot 4^{\circ}$. The measured angle was $4 \cdot 7^{\circ}$. It is somewhat surprising that twinning and not a new structure is generated by shear, in view of the fact that large 'shuffles' are involved to maintain the ordered arrangement. It has been predicted in such cases that a new structure is expected (Laves, 1952). However, it is worth pointing out in this regard that simple shears in the $\mathbf{b}$ and $\mathbf{c}$ directions on a hard sphere model will carry out the entire atomic rearrangement without shuffles (Fairhurst, 1966).

In the Introduction it was pointed out that the unit cell is pseudo-hexagonal. In hexagonal indices, the twin plane is ( $10 \overline{1} \overline{2}$ ) which is a common $K_{2}$ for twinning in hexagonal metals (Rosenbaum, 1964). $K_{2}$ in $\mathrm{Ag}_{3} \mathrm{Sn}$ is $K_{1}$ in hexagonal metals. The magnitude of the shear is also comparable. $\eta_{1}$ and $\eta_{2}$ are not, however, equivalent.

## 3. $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$

Precession photographs taken at $90^{\circ}$ intervals around $\langle 100\rangle$ axes confirmed that the structure is cubic. The symmetry of the cube axis was twofold; thus, the Laue symmetry was $m 3$. Extinctions were found only for $h+k+l=$ odd. There were four possible space groups: $123-T^{3}$ (No. 197), $12,3-T^{5}$ (No. 199), Im $3-T_{h}^{5}$ (No. 204), and Ia3- $T_{h}^{7}$ (No. 206). The $I a 3$ space group could be eliminated as the reflections observed included $013,017,015$, etc., which are not allowable in this case. The chemical analysis of this phase, as indicated by Murphy (1931) suggests the compound is $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$. The density was reported as $13.48 \mathrm{~g} . \mathrm{cm}^{-3}$. Using a lattice parameter of $10.0 \AA$, the number of atoms per unit cell is about fifty. Intensities from the near-spherical crystal corrected

Table 5. Structural parameters $\left(\times 10^{4}\right)$ for $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$ (space group: I23 No. 197)

|  | Equi- | Occupation factor |  |  |  | Temperature factors |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | point |  | X | $Y$ | $Z$ | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| $\mathrm{Hg}_{1}$ | (c) | 8 | 1151 (7) | 1151 | 1151 | 38 (5) | 38 | 38 | 6 (5) | 6 | 6 |
| $\mathrm{Ag}_{1}$ | (c) | 8 | 3285 (10) | 3285 | 3285 | 9 (5) | 9 |  | 3 (6) | 5 | 3 |
| $\mathrm{Hg}_{2}$ | (f) | $22 \cdot 2$ | 2957 (6) | 3359 (7) | 291 (6) | 16 (4) | 50 (6) | 23 (5) | -4 (4) | -5 (3) | -11(4) |
| $\mathrm{Ag}_{2}$ | (d) | $(1 \cdot 1)$ 12 | 3550 (15) | 0 | 0 | 23 (10) | 32 (10) | 17 (9) | 0 | 0 | 3 (12) |

for absorption* were used to prepare a three-dimensional Patterson function. The sections containing significant Patterson peaks were $z=0.0,0.175,0.325$. For $I 2_{1} 3$ there are not proper equipoints to distribute the 30 atoms of Hg and 20 atoms of Ag to obtain an ordered structure. For ordered structures in Im3 and $I 23$ the 20 Ag atoms must be distributed in such a way that vectors at $\frac{1}{2}, \frac{1}{2}, 0$ or $\frac{1}{2}, 0,0$ are required in the Patterson synthesis. These were absent.
It has long been thought that this material was a $\gamma^{-}$ brass type in view of the large cubic cell and the electron-to-atom ratio of 1.6. Many of these compounds contain 52 atoms in a unit cell, but it is not unusual for such structures to have vacant sites (Betterton \& Hume-Rothery, 1952). Hence, the possible space groups were reconsidered with 32 Hg sites per cell, two of which are vacant and chosen at random from cell to cell. (If 22 Ag and 30 Hg atoms are considered. reasoning similar to that in the previous paragraph eliminates this possibility.) 12,3 and $\operatorname{Im} 3$ were still not possible. The only possible space group was 123 with Hg atoms on $24(f)$ and $8(c)$ equipoints and Ag on $12(d)$ and $8(c)$. The atomic coordinates are:

$$
\begin{aligned}
& \left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+ \\
& \text { 24(f): } x, y, z ; z, x, y ; y, z, x ; x, \bar{y}, \bar{z} ; z, \bar{x}, \bar{y} ; y, \bar{z}, \bar{x} \\
& \bar{x}, y, \bar{z} ; \bar{z}, x, \bar{y} ; \bar{y}, z, \bar{x} ; \bar{x}, \bar{y}, z ; \bar{z}, \bar{x}, y ; \bar{v}, \bar{z}, x \\
& 12(d): x, 0,0 ; 0, x, 0 ; 0,0, x ; \bar{x}, 0,0 ; 0, \bar{x}, 0 ; 0,0, . \bar{x} \\
& 8(c): x, x, x ; x, \bar{x}, \bar{x} ; \bar{x}, x, \bar{x} ; \bar{x}, \bar{x}, x .
\end{aligned}
$$

$1 \overline{4} 3 m-T_{d}^{3}$ (No. 217), the space group for the structure having the Strukturbericht designation $D 8_{2}\left(\mathrm{Cu}_{5} \mathrm{Zn}_{8}\right)$, is a typical $\gamma$-brass type. The rank 24 equipoint in this case has the form $x x z$ rather than $x y z$ for I23. Both groups are noncentrosymmetric. The 411 and 330 peaks are strong reflections from $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$ as for the known $D 8_{2}$ structures. For all these reasons, it was decided to refine the structure using as starting parameters atomic coordinates for $\mathrm{Cu}_{5} \mathrm{Cd}_{8}$ (Bradley \& Gregory, 1931). Again atomic scattering factors were corrected for dispersion (Cromer, 1965; Cromer \& Waber, 1965).

[^1]After initial stages of refinement, equivalent reflections were averaged and those that had intensities less than three standard deviations were eliminated, reducing the number of independent reflections from 231 to 160 . Refinement was continued with isotropic and anisotropic temperature factors. In both cases, the occupation of the $\mathrm{Hg} 24(f)$ equipoint was a variable. With anisotropic factors $R_{1}$ was $0 \cdot 143, R_{2}$ was 0.187 ; for isotropic temperature factors, $R_{1}=0.160$, $R_{2}=0 \cdot 208$. Results are given in Table 5 for the anisotropic factors, and the structure factors are given in Table 6. Note that there are about two vacant Hg sites on the rank 24 equipoint; with the error on this value it is barely significant, but is supported by the reported density and lattice parameter; as mentioned earlier, these lead to 50 atoms per cell.
[Baird \& Muller (1969a) have attempted to refine our data using an orthorhombic structure but found that the resulting parameters were cubic, further sup-

Table 6. Observed and calculated structure factors for $\mathrm{Ag}_{3} \mathrm{Hg}_{3}$



Fig. 3. Stereo pair of the unit cell of $\mathrm{Ag}_{3} \mathrm{Hg}_{3}$. [Drawn with $O R T E P$ (Johnson, 1965)]. Large atoms are Hg. Two of these sites are vacant in the structure.
porting the space group we have chosen. They also tried a least-squares refinement for the cubic space group used here, $I 23$, but used only unit weighting, no corrections for anomalous dispersion, and also appear to have chosen the wrong equivalences (due to symmetry) of the anisotropic temperature factor for the Ag atoms on the $12(\mathrm{~d})$ equipoint.]

The unit cell is shown in Fig. 3. The lattice parameter employed was $10.0506 \AA$ for Hg -rich $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$ (Dreiner, 1958). Some typical interatomic distances are given in Table 7.

Table 7. Nearest-neighbor distances in $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$

| $\mathrm{Hg}(1)-\mathrm{Hg}(1)[55504]$ | $3.272 \AA^{*}$ |
| :--- | :--- |
| $\mathrm{Hg}(2)-\mathrm{Hg}(2)[55521]$ | 2.936 |
| $\mathrm{Hg}(1)-\mathrm{Hg}(2)[55501]$ | 2.994 |
| $\mathrm{Hg}(1)-\mathrm{Ag}(1)[45516]$ | 2.990 |
| $\mathrm{Hg}(1)-\mathrm{Ag}(2)[55501]$ | 2.914 |
| $\mathrm{Hg}(2)-\mathrm{Ag}(1)[55422]$ | 2.890 |
| $\mathrm{Hg}(2)-\mathrm{Ag}(2)[55518]$ | 2.880 |
| $\mathrm{Ag}(1)-\mathrm{Ag}(2)[55517]$ | 3.057 |
| $\mathrm{Ag}(2)-\mathrm{Ag}(2)[65507]$ | 2.915 |

* The first atom is in the first position of the equipoint. The second position is indicated as in ORTEP (Johnson, 1965). The symbol represents ( $5+x$ unit cell translations). $10^{4}+(5+$ $y$ translations). $10^{3}+\left(5+z\right.$ translations). $10^{2}+$ (number of coordinate set in general equipoint). The last term is obtained by counting from left to right in the positions given in the text.

There are two interesting features of this structure: (i) The majority of the heavy mercury atoms are in general positions. The result of this is that the structure has only twofold symmetry along the cube axis instead of the fourfold in the $D 8_{2}$ structures of $\mathrm{Cu}_{5} \mathrm{Zn}_{8}$ and $\mathrm{Cu}_{5} \mathrm{Cd}_{8}$; (ii) the total electron count for all the atoms in the cell is about 76 , lower than the values of 84-88 usually found for such compounds. (It should be kept in mind that the crystals were prepared from Hg-rich solid solutions, so that the electron count would be the highest over the range of compositions for which this phase exists.)

## 4. Twinning in $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$

Some extra reflections were found for certain crystals grown at room temperature, which appeared to be reflections of other spots across (112) planes. A similar twinning has been detected by Baird \& Muller (1969b) in crystals grown from nitrate solutions.

## Discussion

A new unit cell was detected for $\mathrm{Ag}_{3} \mathrm{Sn}$. The structure is ordered and remains so until at least $175^{\circ} \mathrm{C}$. This phase deforms mechanically, and intensity data show that observed shear markings are true twins, despite the ordered arrangement of atoms. The structure can be described as deformed hexagonal similar to structures with the Strukturbericht designation $D O_{22}$. It has the same structure as $\mathrm{Cu}_{3} \mathrm{Ti}$ (Laves \& Walbaum, 1939; Karlson, 1951), and $\mathrm{Mo}_{3} \mathrm{Ni}$ (Saito \& Beck, 1959). In
all these phases nearly close-packed layers are stacked along a pseudo threefold axis (the $b$ axis), in a h.c.p. sequence, $a b a b \ldots$ The layers themselves consist of $\langle 100\rangle$ rows of atoms, alternating rows being all Ag or half Ag -half Sn , as can be seen in Fig. 1. It is interesting to note that all of these phases reported previously have involved one or more transition elements, whereas $\mathrm{Ag}_{3} \mathrm{Sn}$ does not. The pseudo-hexagonal nature of the structure also expresses itself in its twinning mode, which is similar to that for hexagonal metals.

The similarity of the structure of $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$ to that of the $\gamma$-brass type, $D 8_{2}$, has already been pointed out. The reduced symmetry of the general position as compared to $D 8_{2}$ may be due to the vacant sites in the structure of $\mathrm{Ag}_{2} \mathrm{Hg}_{3}$.

This work was supported by the Advanced Research Projects Agency through Northwestern University's Materials Research Center under Contract SD-67 and through training and research grants DE22 and DE01057 from the National Institutes of HealthNational Institute for Dental Research, and the Division of Research Facilities and Resources of NIH. Mr Robert Grosso performed the calculations of the absorption factor for $\mathrm{Ag}_{3} \mathrm{Sn}$. Mr John Dunn and Miss Kirsti Paavola carried out the final stages of refinements as part of advanced courses in diffraction at Northwestern University.

## References

Albrecht, G. (1939). Rev. Sci. Instrum. 10, 221.
Baird, H. W. \& Muller, F. A. (1969a). J. Biomed. Mater. Res. 3, 375.
Baird, H. W. \& Muller, F. A. (1969b). J. Biomed. Mater. Res. 3, 369.
Berman, H. \& Harcourt, G. A. (1938). Amer. Min. 23, 761.

Betterton, J. O. \& Hume-Rothery, W. (1952). J. Inst. Met. 80, 459.
Black, G. V. (1895). Dent. Cosmos, 37, 553, 637.
Black, G. V. (1896). Dent. Cosmos, 38, 43, 965.
Bond, W. L. (1951). Rev. Sci. Instrum. 22, 344.
Bradley, A. J. \& Gregory, C. H. (1931). Phil. Mag. 12, 143.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1960). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
Cahn, R. W. (1954). Advanc. Phys. 3, 363.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 105.
Dreiner, R. (1958). Thesis, Facultät für Bergbau and Hüttenwesen, Aachen, Germany.
Fairhurst, C. W. (1966). Ph. D. Dissertation, Northwestern Univ.
Fairhurst, C. W. \& Ryge, G. (1962). Advanc. X-ray Anal. 5, 64.
Greninger, A. B. \& Troiano, A. R. (1949). Trans. A.I.M.E. 185, 590.
Hume-Rothery, W. (1926). J. Inst. Met. 35, 127.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.

International Tables for X-ray Crystallography, (1959). Vol. II, Birmingham: Kynoch Press.
International Tables for X-ray Crystallography, (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, Carroll K. (1965). ORTEP. Report ORNL-3794
Oak Ridge National Laboratory, Tennessee.
Karlsson, N. (1951). J. Inst. Met. 79, 391.
Laves, F. (1952). Naturwissenschaften, 30, 546.
Laves, F. \& Walbaum, H. J. (1939). Naturwissenschaften, 27, 674.
Murphy, A. J. (1926). J. Inst. Met. 35, 107.

Murphy, A. J. (1931). J. Inst. Met. 46, 507.
Nial, O., Almin, A. \& Westgren, A. (1931). Z. Phys. Chem. B14, 81.
Preston, G. D. (1926). J. Inst. Mct. 35, 118, 129.
Preston, G. D. (1931). J. Inst. Met. 46, 522.
Rosenbaum, H. (1964). Deformation Twinning. p. 43. New York: Gordon \& Breach.
Ryge, G., Fairhurst, C. W. \& Fischer, C. M. (1961). Int. Dent. J. 11, No. 2.
Saito, S. \& Beck, P. A. (1959). Trans. A.I.M.E. 215, 938.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.

# The Crystal Structure of 4-Carbethoxyanilinium Bis-p-nitrophenylphosphate 

By J. Pletcher and M. Sax<br>Biocrystallography Laboratory, Veterans Administration Hospital, Pittsburgh, Pa. 15240, U.S.A.<br>and C. S. Yoo*<br>Department of Crystallography, University of Pittshurgh, Pittshurgh, Pa. 15213, U.S.A.

(Received 16 April 1971)


#### Abstract

The crystal structure of a 1:1 complex between 4-aminobenzoic acid ethyl ester and bis-p-nitrophenylphosphate has been determined. Crystals are orthorhombic, Pna $2_{1}, a=12 \cdot 273$ (4), $b=27.357$ (4), $c=$ $7 \cdot 114$ (4) $\AA, Z=4$. The intensities of 2221 reflections were measured with a four-circle automated diffractometer using $\mathrm{Cu} K \alpha$ radiation. The structure was refined to an $R$ of 0.049 over all the reflections. In the complex the 4 -amino group is protonated. All three of the amino hydrogen atoms participate in hydrogen bonds to the phosphate group with N ---O distances of $2 \cdot 754,2 \cdot 780$, and $2 \cdot 838 \AA$. The bis-$p$-nitrophenylphosphate ion, which is also found in crystalline complexes with phenacaine and procaine, has a CO-P-OC valency angle of $97.8^{\circ}$. This structural feature, along with the torsion angles about the phosphate ester bonds, shows greater similarity to that in the phenacaine complex. The molecular packing indicates that the nonpolar interactions between the components of the complex are more extensive than was observed in the procaine complex. This aspect was also apparent in the structure of the phenacaine complex, although not to the same extent as in the present structure.


## Introduction

On the basis of studies with model systems (Feinstein, 1964; Feinstein \& Paimre, 1966), Feinstein and Paimre suggested that local anesthetics block nerve conduction by complexing with phospholipids in the neural membrane. Their studies demonstrated that the local anesthetics would precipitate phospholipids or phosphodiester compounds in general. In fact, the reaction with a simple phosphodiester, bis-p-nitrophenylphosphate, resulted in the precipitation of a crystalline complex. To examine the nature of this interaction, we determined the crystal structures of several of these complexes (Sax, Pletcher \& Gustaffson, 1970; Sax, Pletcher, Yoo \& Stewart, 1971). The results of these structure analyses, along with other experimental observations, led to the suggestion that the hydrogenbond donor capability of local anesthetics was an

[^2]important aspect in the anesthetics' mode of action (Sax \& Pletcher, 1969). In exploring this idea further, we attempted to prepare a complex with a neutral, nonionizable local anesthetic. Benzocaine, which is 4-aminobenzoic acid ethyl ester, was selected for this purpose as it is normally regarded as a neutral, nonionizable drug. Contrary to expectation that the benzocaine complex with bis- $p$-nitrophenylphosphoric acid would exist in the uncharged or neutral form, crystalstructure analysis shows that the complex crystallizes in the ionized form.

## Experimental

Crystals of the complex were prepared by mixing equimolar solutions of bis-p-nitrophenylphosphoric acid* and benzocaine $\dagger$ in absolute methanol. White needle-shaped crystals of the complex were obtained

[^3]
[^0]:    * This paper is taken from the Ph.D. thesis of one of the authors (C.W.F.), submitted in partial fulfillment of the degree requirements for Northwestern University, 1966.
    $\dagger$ Present address: General Manager, Dental Research and Development, S. S. White Division, Pennwalt Corporation, Philadelphia, Pennsylvania, U.S.A.

[^1]:    * $\mu r$ was taken to be 14 , by averaging the radius at several points, and the corrections for a sphere in International Tables for X-ray Crystallography (1959) were employed.

[^2]:    * In partial fulfilment of the requirement for the Ph.D. degree.

[^3]:    * Aldrich Chemical Company.
    $\dagger$ Eastman Organic Chemicals.

